Duct water cooling units

KWK

for rectangular air ducts

Use
- Supply air cooling for ventilation systems in various premises.
- Suitable for installation into supply ventilation or into air handling units to provide air cooling.

Design
- Galvanized steel casing.
- The cooling elements are made of copper tubes and aluminum plates.
- Available in three-coil modifications and rated for maximum operating pressure 1.5 MPa (15 bar).
- Polypropylene droplet separator and drain pan for condensate drainage and removal included.
- Droplet separator is efficient at an air flow not exceeding 4 m/s.

Mounting
- Only horizontal mounting by means of flanged connection. Air evacuation and condensate drainage must be provided.
- Air filter installation upstream of the cooling unit to prevent the unit soiling.
- Installation position must ensure uniform air flow distribution in the section.
- Installation upstream or downstream of the supply fan. The minimum air duct length downstream of the fan must be 1-1.5 m to ensure air flow stabilization.
- The maximum cooling capacity is attained if the cooling unit is connected on counter-flow basis. The attached charts are valid for counter-flow connection.
- If water is used as a cooling agent, the cooling unit is suitable for indoor use only with the ambient temperature not below 0 °C.
- If antifreezing solution, for example, ethylene glycol solution, is used as a cooling agent, the cooling unit is suitable for outdoor use as well.
- While mounting the cooling unit provide condensate drainage through the U-trap. The U-trap height must be selected with respect to the total fan pressure, refer to the table and diagram below.

Overall dimensions

<table>
<thead>
<tr>
<th>Type</th>
<th>Dimensions [mm]</th>
<th>H [mm]</th>
<th>K [mm]</th>
<th>P [Pa]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>B1</td>
<td>B2</td>
<td>B3</td>
</tr>
<tr>
<td>KWK 40х20-3</td>
<td>400</td>
<td>420</td>
<td>440</td>
<td>470</td>
</tr>
<tr>
<td>KWK 50х25-3</td>
<td>500</td>
<td>520</td>
<td>540</td>
<td>570</td>
</tr>
<tr>
<td>KWK 50х30-3</td>
<td>600</td>
<td>620</td>
<td>640</td>
<td>670</td>
</tr>
<tr>
<td>KWK 60х30-3</td>
<td>700</td>
<td>720</td>
<td>740</td>
<td>770</td>
</tr>
<tr>
<td>KWK 70х40-3</td>
<td>800</td>
<td>820</td>
<td>840</td>
<td>870</td>
</tr>
<tr>
<td>KWK 90х50-3</td>
<td>900</td>
<td>920</td>
<td>940</td>
<td>970</td>
</tr>
<tr>
<td>KWK 100х50-3</td>
<td>1000</td>
<td>1020</td>
<td>1040</td>
<td>1070</td>
</tr>
</tbody>
</table>

H – U-trap height
K – drain height
P – total fan pressure

For a proper and safe operation of the cooling unit it should be connected to a control system for integral control and automatic cooling capacity regulation.

Counter air flow connection

Air flow streamwise connection
DX cooling unit calculation diagram

How to use water cooling coil diagrams:
Sample parameters: Air flow = 900 m³/h, air flow speed through the cooling coil = 3.2 m/s.

- Supply air temperature: Prolong the line of air flow (e.g. 900 m³/h) up to the point where it crosses the outside air temperature (e.g. +32 °C); then draw a horizontal line from this point to the left until it crosses the outdoor air humidity curve (e.g. 50 %). From this point draw a vertical line to the supply air temperature axis on top of the graphic (20.1 °C).

- Cooling coil capacity: Prolong the line up to the point where it crosses the outside air temperature (e.g. +32 °C) and draw a horizontal line from this point to the right until it crosses the outdoor air humidity curve (e.g. 50 %). From here draw a vertical line up to the scale representing the cooling coil capacity (6.5 kW).

- Water flow through the coil: Prolong the line down to the water flow axis at the bottom of the graphic (0.25 l/s).

- Water pressure drop: Draw the line from the point where the line crosses the black curve to the pressure drop axis (15.0 kPa).
How to use water cooling coil diagrams:

Sample parameters: Air flow = 1400 m³/h, air flow speed through the cooling coil = 3.1 m/s.

- **Supply air temperature:** Prolong the line of air flow (e.g. 1400 m³/h) up to the point where it crosses the outside air temperature (e.g. +32 °C); then draw a horizontal line from this point to the left until it crosses the outdoor air humidity curve (e.g. 50 %). From this point draw a vertical line to the supply air temperature axis on top of the graphic (20 °C).
- **Cooling coil capacity:** Prolong the line up to the point where it crosses the outside air temperature (e.g. +32 °C) and draw a horizontal line from this point to the right until it crosses the outdoor air humidity curve (e.g. 50 %). From here draw a vertical line up to the scale representing the cooling coil capacity (10.0 kW).
- **Water flow through the coil:** Prolong the line down to the water flow axis at the bottom of the graphic (0.4 l/s).
- **Water pressure drop:** Draw the line from the point where the line crosses the black curve to the pressure drop axis (17.0 kPa).

How to use water cooling coil diagrams:

Sample parameters: Air flow = 2000 m³/h, air flow speed through the cooling coil = 3.75 m/s.

- **Supply air temperature:** Prolong the line of air flow (e.g. 2000 m³/h) up to the point where it crosses the outside air temperature (e.g. +32 °C); then draw a horizontal line from this point to the left until it crosses the outdoor air humidity curve (e.g. 50 %). From this point draw a vertical line to the supply air temperature axis on top of the graphic (20.6 °C).
- **Cooling coil capacity:** Prolong the line up to the point where it crosses the outside air temperature (e.g. +32 °C) and draw a horizontal line from this point to the right until it crosses the outdoor air humidity curve (e.g. 50 %). From here draw a vertical line up to the scale representing the cooling coil capacity (13.6 kW).
- **Water flow through the coil:** Prolong the line down to the water flow axis at the bottom of the graphic (0.54 l/s).
- **Water pressure drop:** Draw the line from the point where the line crosses the black curve to the pressure drop axis (27 kPa).
Water Cooling Unit Calculation Diagram

How to Use Water Cooling Coil Diagrams:

Sample Parameters: Air flow = 2500 m³/h, air flow speed through the cooling coil = 3.75 m/s.

- **Supply Air Temperature:** Prolong the line of air flow (e.g., 2500 m³/h) up to the point where it crosses the outside air temperature (e.g., +32 °C); then draw a horizontal line from this point to the left until it crosses the outdoor air humidity curve (e.g., 50%). From this point draw a vertical line to the supply air temperature axis on top of the graphic (20.7 °C).
- **Cooling Coil Capacity:** Prolonging the line to the point where it crosses the outside air temperature (e.g., +32 °C) and draw a horizontal line from this point to the right until it crosses the outdoor air humidity curve (e.g., 50%). From here draw a vertical line up to the scale representing the cooling coil capacity (17.0 kW).
- **Water Flow Through the Coil:** Draw the line down to the water flow axis at the bottom of the graphic (0.68 l/s).
- **Water Pressure Drop:** Draw the line from the point where the line crosses the black curve to the pressure drop axis (27 kPa).

How to Use Water Cooling Coil Diagrams:

Sample Parameters: Air flow = 2850 m³/h, air flow speed through the cooling coil = 3.85 m/s.

- **Supply Air Temperature:** Prolong the line of air flow (e.g., 2850 m³/h) up to the point where it crosses the outside air temperature (e.g., +32 °C); then draw a horizontal line from this point to the left until it crosses the outdoor air humidity curve (e.g., 50%). From this point draw a vertical line to the supply air temperature axis on top of the graphic (20.7 °C).
- **Cooling Coil Capacity:** Prolonging the line to the point where it crosses the outside air temperature (e.g., +32 °C) and draw a horizontal line from this point to the right until it crosses the outdoor air humidity curve (e.g., 50%). From here draw a vertical line up to the scale representing the cooling coil capacity (19.8 kW).
- **Water Flow Through the Coil:** Draw the line down to the water flow axis at the bottom of the graphic (0.75 l/s).
- **Water Pressure Drop:** Draw the line from the point where the line crosses the black curve to the pressure drop axis (30 kPa).
How to use water cooling coil diagrams:

Sample parameters: Air flow = 4000 m³/h, air flow speed through the cooling coil = 4.15 m/s.

- **Supply air temperature**: Prolong the line of air flow (e.g. 4000 m³/h) up to the point where it crosses the outside air temperature (e.g. +32 °C), then draw a horizontal line from this point to the left until it crosses the outdoor air humidity curve (e.g. 50 %). From this point draw a vertical line to the supply air temperature axis on top of the graphic (19.8 °C).
- **Cooling coil capacity**: Prolong the line up to the point where it crosses the outside air temperature (e.g. +32 °C) and draw a horizontal line from this point to the right until it crosses the outdoor air humidity curve (e.g. 50 %). From here draw a vertical line up to the scale representing the cooling coil capacity (28.5 kW).
- **Water flow through the coil**: Prolong the line down to the water flow axis at the bottom of the graphic (1.14 l/s).
- **Water pressure drop**: Draw the line from the point where the line crosses the black curve to the pressure drop axis (28 kPa).

Sample parameters: Air flow = 6000 m³/h, air flow speed through the cooling coil = 4.35 m/s.

- **Supply air temperature**: Prolong the line of air flow (e.g. 6000 m³/h) up to the point where it crosses the outside air temperature (e.g. +32 °C); then draw a horizontal line from this point to the left until it crosses the outdoor air humidity curve (e.g. 50 %). From this point draw a vertical line to the supply air temperature axis on top of the graphic (19.9 °C).
- **Cooling coil capacity**: Prolong the line up to the point where it crosses the outside air temperature (e.g. +32 °C) and draw a horizontal line from this point to the right until it crosses the outdoor air humidity curve (e.g. 50 %). From here draw a vertical line up to the scale representing the cooling coil capacity (43 kW).
- **Water flow through the coil**: Prolong the line down to the water flow axis at the bottom of the graphic (1.7 l/s).
- **Water pressure drop**: Draw the line from the point where the line crosses the black curve to the pressure drop axis (36 kPa).
How to use water cooling coil diagrams:

Sample parameters: Air flow = 7000 m³/h, air flow speed through the cooling coil = 4.4 m/s.

- **Supply air temperature:** Prolong the line of air flow (e.g., 7000 m³/h) up to the point where it crosses the outside air temperature (e.g., +32 °C); then draw a horizontal line from this point to the left until it crosses the outdoor air humidity curve (e.g., 50%). From this point draw a vertical line to the supply air temperature axis on top of the graphic (19.7 °C).

- **Cooling coil capacity:** Prolonging the line up to the point where it crosses the outside air temperature (e.g., +32 °C) and draw a horizontal line from this point to the right until it crosses the outdoor air humidity curve (e.g., 50%). From here draw a vertical line up to the scale representing the cooling coil capacity (57 kW).

- **Water flow through the coil:** Prolong the line down to the water flow axis at the bottom of the graphic (1.9 l/s).

- **Water pressure drop:** Draw the line from the point where the line crosses the black curve to the pressure drop axis (34 kPa).