

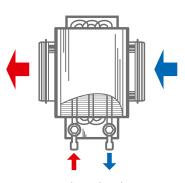
WKH

Duct water heaters for round ducts

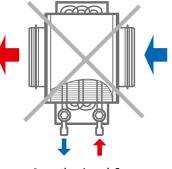
Features

- For warming up of supply air in ventilation systems installed in various premises.
- Suitable for installation in supply or air handling units to warm up the supply air flow.
- For indoor use only if water serves as a heat carrier. For outdoor features use antifreezing mixture (ethylene glycol solution).
- Compatible with \oslash 100 to 315 mm round air ducts.

Design


- Galvanized steel casing.
- Copper pipe manifold.
- Heat exchange surface made of aluminium plates.
- Airtight connection with air ducts due to rubber seals.
- Equipped with a nipple for the system deaeration.
- Outlet header is equipped with a spigot for installation of an immersion temperature sensor or freezing protection mechanism.
- Available in two- or four-row coil modifications.
 Suitable for operation at maximum operating pressure 1.6 MPa (16 bar)
 - and maximum operating temperature +100 °C.

Mounting

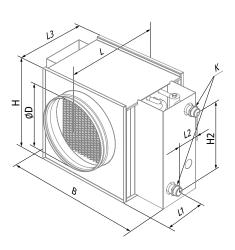

HEATERS

- Fixing to round ducts with clamps.
- Any mounting position that ensures the heater deaeration.
- Install a filter upstream to the heater to protect heating elements against dirt ingress.

- Install the heater in front or behind the fan. In case of mounting behind the fan ensure a distance of not less than two connecting diameters for air flow stabilization and keep the maximum permissible air temperature inside the fan.
- Connect the heater on counter-flow basis, otherwise its capacity drops by 5–15 %. All the nomographic charts are rated for counter-flow connection.
- For correct and safe heater operation an automatic control and protection system is recommended, including the following functions:
 - regulation of the heating capacity and temperature of the air heated up;
 - filter clogging control by a differential air pressure sensor;
 - ventilation system start-up with pre-heated heater;
 - use of air dampers fitted with a spring return actuator;
 - fan turns off in case of freezing danger for the heater.

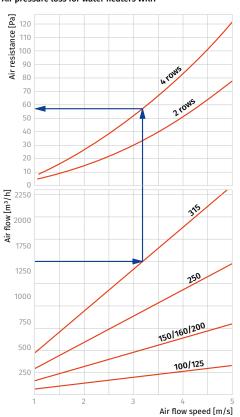
Connection against air flow

Connection along air flow

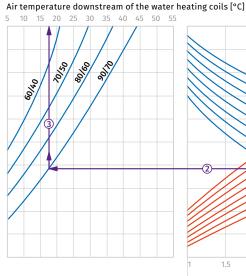


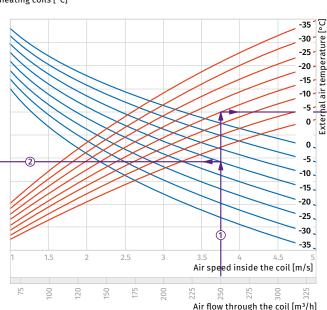
Designation key

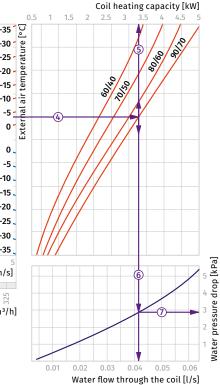
Series	Connected air duct diameter [mm]	Number of water (glycol) coil rows
WKH	100; 125; 150; 160; 200; 250; 315	- 2;4


Overall dimensions [mm]

Model	D	В	н	H2	L	ĽI	L2	L3	к	Number of water coil rows	Weight [kg]
WKH 100-2	100	350	240	150	300	82	43	220	G 3/4"	2	4.5
WKH 100-4	100	350	240	150	300	78	65	220	G 3/4"	4	5.2
WKH 125-2	125	350	240	150	300	82	43	220	G 3/4"	2	4.5
WKH 125-4	125	350	240	150	300	78	65	220	G 3/4"	4	5.2
WKH 150-2	150	400	290	200	300	82	43	220	G 3/4"	2	7.5
WKH 150-4	150	400	290	200	300	78	65	220	G 3/4"	4	8.2
WKH 160-2	160	400	290	200	300	82	43	220	G 3/4"	2	7.5
WKH 160-4	160	400	290	200	300	78	65	220	G 3/4"	4	8.2
WKH 200-2	200	400	290	200	300	82	43	220	G 3/4"	2	7.5
WKH 200-4	200	400	290	200	300	78	65	220	G 3/4"	4	8.2
WKH 250-2	250	470	360	270	350	107	43	270	G 1"	2	10.3
WKH 250-4	250	470	360	270	350	103	65	270	G 1"	4	10.8
WKH 315-2	315	550	440	350	450	157	43	370	G 1"	2	11.5
WKH 315-4	315	550	440	350	450	153	65	370	G 1"	4	12.2


WKH ROUND HEATERS


Air pressure loss for water heaters WKH



Water heaters calculation diagram

WKH 100-2 / WKH 125-2

How to use water neater diagrams. System Parameters: Air flow = 250 m³/h. Outside air temperature = -15 °C. Water temperature (in/out) = +90/+70 °C. The air flow is 250 m³/h and the air speed in the heater is $\Delta T = 1/\sqrt{2}$

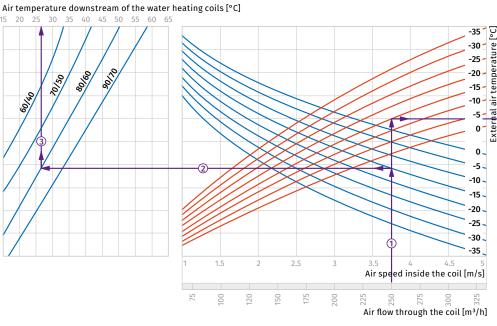
How to use water heater diagrams.

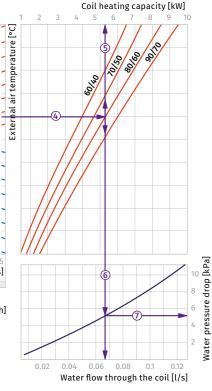
3.75 m/s ①.

• To calculate the maximum air temperature find the intersection point of the air flow line ① with the rated outer temperature shown in blue line (e.g., -15 °C) and draw the line ② to the left until it crosses the water in/out temperature curve (e.g., +90/+70). From this point draw a vertical line to the supply air temperature downstream of the heater (+17.50 °C) (3). • To calculate the heater power find the intersection point of the air flow ① with the rated winter temperature shown in red line (e.g., -15 °C) and draw the line ④ to the right until it crosses the water in/out temperature curve (e.g., +90/+70). From this point draw a vertical line to the heater power axis (3.25 kW) (5).

To calculate the required water flow in the heater prolong this line (b) downwards to the water flow axis (0.042 //s).
To calculate the water pressure drop in the heater find the intersection point of the line (b) with the pressure loss curve and prolong the line (D) to the right on the water pressure drop provided by the pressure of the line (b) by the pressure drop axis (2.9 kPa).

HEATERS


WKH 100-4 / WKH 125-4


5

è

05/09

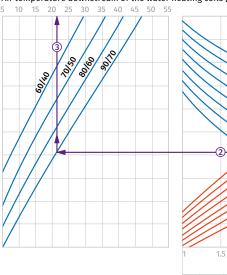
15 20 30

How to use water heater diagrams. System Parameters: Air flow = 250 m³/h. Outside air temperature = -15 °C. Water temperature (in/out) = +80/+60 °C. The air flow is 250 m³/h and the air speed in the heater is 3.75 m/s ().

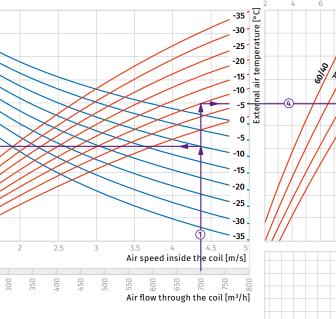
• To calculate the maximum air temperature find the intersection point of the air flow line ① with the rated outer temperature shown in blue line (e.g., -15 °C) and draw the line ② to the left until it crosses the water in/out temperature curve (e.g., +80/+60). From this point draw a vertical line to the supply air temperature downstream of the heater (+27 °C) \Im .

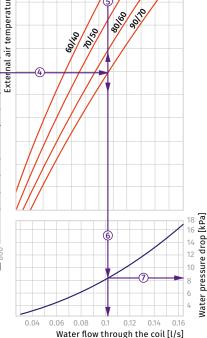
To calculate the heater power find the intersection point of the air flow (1) with the rated winter temperature shown in red line (e.g., -15 °C) and draw the line (to the right until it crosses the water in/out temperature curve (e.g., +80/+60). From this point draw a vertical line to the heater power axis (5.2 kW) ⑤.

To calculate the required water flow in the heater prolong this line (6) downwards to the water flow axis (0.067 l/s). • To calculate the water pressure drop in the heater find the intersection point of the line (6) with the pressure loss curve and prolong the line O to the right on the water pressure drop axis (5.2 kPa).



Coil heating capacity [kW]


10

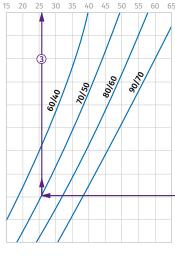

WKH 150-2 / WKH 160-2 / WKH 200-2

Air temperature downstream of the water heating coils [°C]

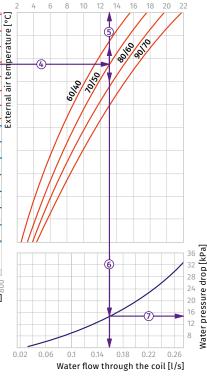
250

How to use water heater diagrams System Parameters: Air flow = 700 m³/h. Outside air temperature = -10 °C. Water temperature (in/out) = +90/+70 °C. The air flow is 700 m³/h and the air speed in the heater is 4.4 m/s ①.

• To calculate the maximum air temperature find the intersection point of the air flow line ① with the rated outer temperature shown in blue line (e.g., -10 °C) and draw the line ② to the left until it crosses the water in/out temperature curve (e.g., +90/+70). From this point draw a vertical line to the supply air temperature downstream of the heater (+21 °C) (3).


• To calculate the heater power find the intersection point of the air flow with the rated winter temperature shown in red line (e.g., -10 °C) and draw the line (to the right until it crosses the water in/out temperature curve (e.g., +90/+70). From this point draw a vertical line to the heater power axis (8.6 kW) (5).

 To calculate the required water flow in the heater prolong this line ⑥ downwards to the water flow axis (0.11 l/ • To calculate the water pressure drop in the heater find the intersection point of the line with the pressure loss curve and prolong the line to the right on the water pressure drop axis (8.2 kPa).

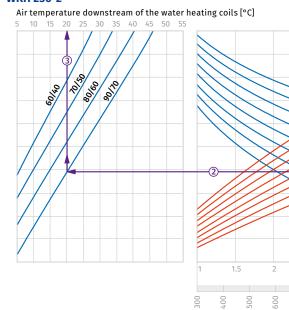

Coil heating capacity [kW]

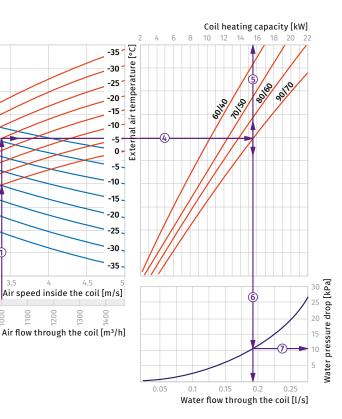
WKH 150-4 / WKH 160-4 / WKH 200-4

Air temperature downstream of the water heating coils [°C]

-35 -30 -25 -20 -15 -10 -5 -0 -5 -10 -15 -20 -25 -30 -35 2.5 3 Air speed inside the coil [m/s] 450 650 700 Air flow through the coil [m³/h]

How to use water heater diagrams. System Parameters: Air flow = 700 m³/h. Outside air temperature = -25 °C. Water temperature (in/out) = +70/+50 °C.


The air flow is 700 m³/h and the air speed in the heater is 4.4 m/s ①.


To calculate the maximum air temperature find the intersection point of the air flow line ① with the rated outer temperature shown in blue line (e.g., -25 °C) and draw the line ② to the left until it crosses the water in/out temperature curve (e.g., +70/+50). From this point draw a vertical line to the supply air temperature downstream of the heater (+26 °C) ③.

To calculate the heater power find the intersection point of the air flow (1) with the rated winter temperature shown in red line (e.g., -25 °C) and draw the line (4) to the right until it crosses the water in/out temperature curve (e.g., +70/+50). From this point draw a vertical line to the heater power axis (13.0 kW) ⑤.

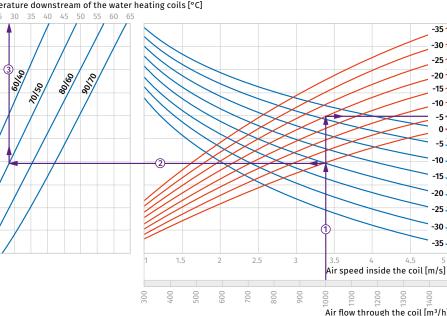
To calculate the required water flow in the heater prolong this line (6) downwards to the water flow axis (0.16 I/s). To calculate the water pressure drop in the heater find the intersection point of the line (6) with the pressure loss curve and prolong the line (2) to the right on the water pressure drop axis (15 kPa). WKH 250-2

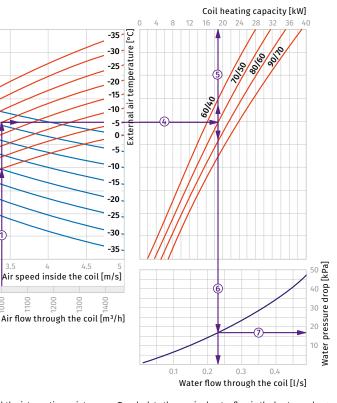
BLAUBERG

How to use water heater diagrams. System Parameters: Air flow = 1000 m³/h. Outside air temperature = -20 °C.

Water temperature $(in/out) = +20 (1 - 20)^{-2}$ The air flow is 1000 m³/h and the air speed in the heater is 3.4 m/s ①.

To calculate the maximum air temperature find the The board of the air flow line \bigcirc with the rated outer temperature shown in blue line \bigcirc with the rated outer temperature shown in blue line (e.g., -20 °C) and draw the line \oslash to the left until it crosses the water in/out temperature curve (e.g., +90/+70). From this point draw a vertical line to the supply air temperature downstream of the board (-20 °C) the heater (+20 °C) (3).


• To calculate the heater power find the intersection point of the air flow ① with the rated winter temperature shown in red line (e.g., -20 °C) and draw the line ④ to the right until it crosses the water in/out temperature curve (e.g., +90/+70). From this point draw a vertical line to the heater power axis (15.5 kW) (5).


700 800 T

• To calculate the required water flow in the heater prolong To calculate the required water flow in the nearer proofing this line (6) downwards to the water flow axis (0.19 1/s).
To calculate the water pressure drop in the heater find the intersection point of the line (6) with the pressure loss curve and prolong the line (7) to the right on the water pressure drop axis (11.0 kPa).

WKH 250-4

Air temperature downstream of the water heating coils [°C] 20 15

How to use water heater diagrams.

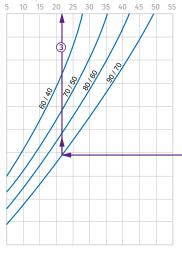
System Parameters: Air flow = 1000 m³/h. Outside air temperature = -20 °C. Water temperature (in/out) = +70/+50 °C. The air flow is 1000 m³/h and the air speed in the heater is 3.4 m/s ①.

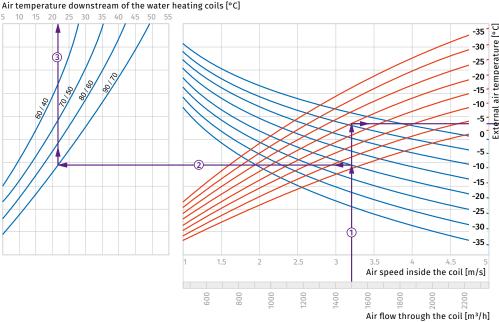
• To calculate the maximum air temperature find the intersection point of the air flow line ① with the rated outer temperature shown in blue line (e.g., -20 °C) and draw the line ② to the left until it crosses the water in/out temperature curve (e.g., +70/+50). From this point draw a vertical line to the supply air temperature downstream of the heater (+28 °C) ③.

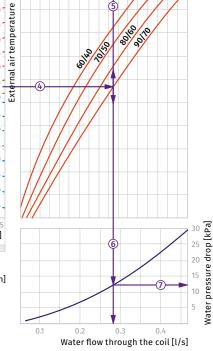
• To calculate the heater power find the intersection point of the air flow 0 with the rated winter temperature shown in red line (e.g., -20 °C) and draw the line 0 to the right until it crosses the water in/out temperature curve (e.g., +70/+50). From this point draw a vertical line to the heater power axis (19.0 kW) ⑤.

• To calculate the required water flow in the heater prolong To calculate the required water flow in the nearer proofing this line (6) downwards to the water flow axis (0.23 1/s).
To calculate the water pressure drop in the heater find the intersection point of the line (6) with the pressure loss curve and prolong the line (7) to the right on the water pressure drop axis (17.0 kPa).

202




Coil heating capacity [kW]


8

16 20

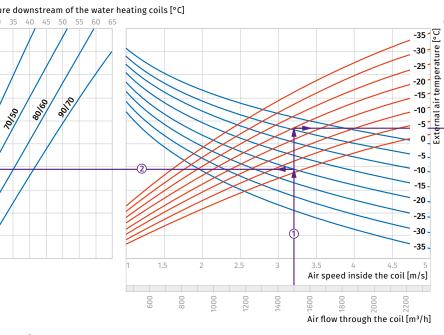
WKH 315-2

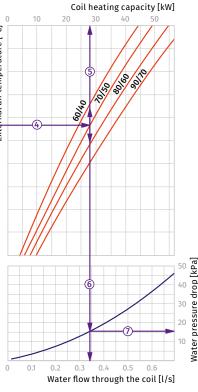
How to use water heater diagrams. System Parameters: Air flow = 1500 m³/h. Outside air temperature = -20 °C.

30

60/40

Water temperature (n/out) = +90/+70 °C. The air flow is 1000 m³/h and the air speed in the heater is 3.2 m/s ①.


To calculate the maximum air temperature find the The formation of the air flow line \bigcirc with the rated outer temperature shown in blue line \bigcirc with the rated outer temperature shown in blue line (e.g., -20 °C) and traw the line \oslash to the left until it crosses the water in/out temperature curve (e.g., +90/+70). From this point draw a vertical line to the supply air temperature downstream of the bester (22 SC) the heater (+21 °C) ③.


 To calculate the heater power find the intersection point of the air flow ① with the rated winter temperature shown in red line (e.g., -20 °C) and draw the line ④ to the right until it crosses the water in/out temperature curve (e.g., +90/+70). From this point draw a vertical line to the heater power axis (23.0 kW) Ġ.

• To calculate the required water flow in the heater prolong To calculate the required water how in the nearer proong this line (a) downwards to the water flow axis (0.28 l/s).
To calculate the water pressure drop in the heater find the intersection point of the line (b) with the pressure loss curve and prolong the line (c) to the right on the water pressure drop axis (12.5 kPa).

WKH 315-4 20

Air temperature downstream of the water heating coils [°C]

How to use water heater diagrams.

System Parameters: Air flow = 1500 m³/h. Outside air temperature = -20 °C. Water temperature (in/out) = +70/+50 °C. The air flow is 1000 m³/h and the air speed in the heater is 3.2 m/s ①.

• To calculate the maximum air temperature find the intersection point of the air flow line () with the rated outer temperature shown in blue line (e.g., -20 °C) and draw the line (2) to the left until it crosses the water in/out tamperature curve (e.g., +70/+50). From this point draw a vertical line to the supply air temperature downstream of the heater (+28 °C) \Im .

• To calculate the heater power find the intersection point of the air flow 1 with the rated winter temperature shown in red line (e.g., -20 °C) and draw the line 3 to the right until it crosses the water in/out temperature curve (e.g., +70/+50) (28.0 kW) ⑤.

To calculate the required water flow in the heater prolong this line (6) downwards to the water flow axis (0.34 l/s). • To calculate the water pressure drop in the heater find the intersection point of the line with the pressure loss curve and prolong the line to the right on the water pressure drop axis (16.0 kPa).